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We comprehensively study the effects of bubble wall thickness and speed on the gravitational
wave emission spectrum of collisions of two vacuum bubbles. We numerically simulate a large
dynamical range, making use of symmetry to reduce the dimensionality. The high-frequency slope
of the gravitational wave spectrum is shown to depend on the thickness of the bubble wall, becoming
steeper for thick-wall bubbles, in agreement with recent fully 3+1 dimensional lattice simulations of
many-bubble collisions. This dependence is present, even for highly relativistic bubble wall collisions.
We use the reduced dimensionality as an opportunity to investigate dynamical phenomena which
may underlie the observed differences in the gravitational wave spectra. These phenomena include
‘trapping’, which occurs most for thin-wall bubbles, and oscillations behind the bubble wall, which
occur for thick-wall bubbles.

I. INTRODUCTION

Observations of gravitational waves can provide a new
probe of fundamental physics. In particular, the detec-
tion of a stochastic gravitational wave background could
provide some of the first experimental data on the very
early universe, long before recombination. Due to the
universality of the gravitational coupling, gravitational
waves can also shed light on dark sectors, even if they
are not coupled directly to visible matter.

A first-order phase transition in the early universe
would produce a stochastic gravitational wave back-
ground with characteristic broken power law spectral
shape. The shape is known to depend on several macro-
scopic thermodynamic quantities, such as the tempera-
ture, strength and duration of the phase transition as well
as the speed at which bubble walls expand [1–4]. Gravi-
tational wave detectors, such as the planned space-based
experiment LISA [1, 3, 5], offer the exciting prospect
of measuring a stochastic gravitational wave background
from a first-order phase transition, and therefore of mea-
suring these properties of the early universe. From this
one can learn important information about the underly-
ing particle physics at the time of the first-order phase
transition.

If the phase transition completes before much su-
percooling can take place, the expanding bubble walls
quickly reach a constant terminal speed at which the
vacuum pressure and the friction from the plasma bal-
ance. In this case sound waves propagating through the
fluid medium are thought to dominate the production of
gravitational waves [6–11]. On the other hand, if there is
sufficiently large supercooling, the vacuum pressure may
dominate over the friction from the plasma, and the bub-
ble wall will continue to accelerate until collision. This
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is referred to as a vacuum transition, and is the case we
study here. Such a circumstance appears fine-tuned in
Higgs transitions within minimal electroweak extensions,
due both to the relatively small supercooling necessary
for percolation to complete in allowed regions of param-
eter space [12–18] and also the relatively large friction
caused by the Higgs field’s interactions with Standard
Model particles [19–22]. On the other hand, in dark
sectors with relatively few degrees of freedom [23–25],
in conformal extensions of the Standard Model [26, 27],
and in certain QCD axion models [28], a large degree of
supercooling is more feasible.

Early studies of vacuum first-order phase transitions
focused on the collisions of two isolated bubbles, a system
which has O(2, 1) (hyperbolic) symmetry [29, 30], with
the production of black holes and the structure of the
surrounding spacetime of principal interest. There was
also interest in the efficiency of particle production [31].

The gravitational wave (GW) power spectrum from
colliding pairs of bubbles was also studied, first in pairs
of isolated bubbles [32]. This led directly to the develop-
ment of the ‘envelope approximation’, where the bubble
wall stress-energy is approximated by a Dirac delta func-
tion which vanishes upon collision [31, 33]. Furthermore,
both the scalar field simulations and the envelope ap-
proximation it inspired produce a clear broken power law
shape to the gravitational wave power spectrum, with the
peak frequency determined by the typical bubble sepa-
ration. In particular, the envelope approximation gravi-
tational wave power spectrum for many-bubble collisions
increases as ω3 at low frequencies, and above the peak it
decreases as ω−1, where ω is the angular frequency [34].

However, for highly relativistic bubble collisions, the
large separation of scales between the Lorentz-contracted
bubble wall and the distance between bubbles meant that
direct numerical simulation of large numbers of colliding
bubbles was difficult, and so the envelope approximation
became the main technique used to study gravitational
waves from first-order phase transitions [34, 35]. When
direct numerical simulations of gravitational waves from
thermal phase transitions became possible, it was found
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that long-lived sound waves were the principal source of
gravitational waves [6, 7].

Nevertheless, for vacuum transitions the stress-energy
was perceived as being concentrated on the bubble
wall. Therefore, the use of the envelope approximation
still seemed justified, until direct numerical simulation
showed rather a rather different spectral shape [36, 37].
The simulations found a steeper high-frequency power
law of ω−1.5, and additional high-frequency gravitational
wave production due to the dynamics of the field about
the true vacuum.

Further new insights have been gained from simula-
tions of vacuum transitions in recent years, as computa-
tional capabilities have improved and simulation volumes
have increased [38–40]. These have revealed a surpris-
ingly rich parameter space due to the nonlinear phenom-
ena present during and after the collisions of two bubble
walls.

As a result of these new computer simulations, and re-
newed interest in phase transitions more generally, vac-
uum phase transitions have become the subject of a re-
cent debate. In Ref. [38] a phenomenon was studied
whereby the kinetic energy released in a bubble collision
causes the field to bounce back to the metastable false
vacuum. 1

The term trapping was coined to describe this phe-
nomenon, which was observed to occur for thin-wall bub-
bles, but not for thick-wall bubbles. For the collision of
two planar walls, trapping was shown to occur perma-
nently, with a region of space unable to escape to the
true vacuum. This qualitative difference between the col-
lisions of thick and thin wall bubbles motivated the pos-
sibility of an observable effect in the gravitational wave
spectrum.

Furthermore, Ref. [38] showed that the effect of trap-
ping also depends on the velocity of the bubble walls
at collision. Many direct numerical simulations of bub-
ble collisions in vacuum transitions have been carried
out in three dimensions. In three dimensions compu-
tational limitations on lattice sizes significantly limit
the dynamic range for bubbles to accelerate to large
gamma factors; a system with reduced dimensionality
would allow more extensive studies. However, the geom-
etry of (1+1)-dimensional planar bubble walls studied
in Ref. [38] is physically very different to that of collid-
ing spherical bubbles in (3+1)-dimensions. Working with
the reduced dimensionality of the hyperbolic two-bubble
collision system will allow us to explore the parameter
space of trapping more thoroughly while retaining the
three-dimensional geometry.

Perhaps for this very reason, the hyperbolic two-bubble
system has seen some recent interest. Ref. [39] studied
the GW spectrum of two-bubble collisions, for two sets of
parameter choices, one producing thinner and the other

1 This phenomenon had previously been described in Refs. [29, 30,
41], though not explored specifically.

thicker bubble walls. They found that the GW spectra
were very similar for their two benchmark points, which
led them to conclude that there was no difference be-
tween the GW spectra of collisions of thick- and thin-
wall bubbles. Ref. [40] simulated collisions of many vac-
uum bubbles for four different bubble wall thicknesses.
By contrast, they found a strong dependence of the GW
spectrum on the bubble wall width. In particular, there
it was shown that the gravitational wave power spectrum
high-frequency power-law ω−b with index b was steeper
for thick-wall bubbles than for thin-wall bubbles, varying
from b = 1.36± 0.05 to b = 2.25± 0.18.

To resolve this debate requires a thorough study of the
parameter space of vacuum bubble collisions. In the sim-
plest model, the real scalar theory, there are two param-
eters: the bubble wall thickness, and the Lorentz factor
of the bubble wall at collision. Ideally, one would per-
form fully 3+1 dimensional simulations of many-bubble
collisions. However, such simulations use a significant
amount of computer resources for a single run. In this pa-
per, we study two-bubble collisions, for which one can re-
duce the the problem to (1+1)-dimensions in hyperbolic
coordinates, and comprehensively study the parameter
space of the minimal real scalar theory.

Properly understanding the spectral shape of vacuum
bubble collisions will allow us to infer properties of the
phase transition, if a stochastic gravitational wave back-
ground is detected. It is therefore important to study
both the power law dependence and the nonlinear dy-
namics that result. Today, the spectral shape remains a
significant source of uncertainty [42].

In Section II we introduce our scalar field model, the
symmetries of the problem, and the geometry in which we
study bubble collisions. Next, in Section III, we discuss
the methods we use to compute the gravitational wave
power spectrum and extract the spectral shape. Our re-
sults are presented in Section IV, with discussion follow-
ing in Section V.

II. BUBBLE DYNAMICS

The basic principles of vacuum bubble nucleation and
collision can be studied with a single-component scalar
field φ, for which the potential has a tree-level barrier.
We therefore have the action

S[φ] =

∫
d4x

(
∂µφ∂

µφ− 1

2
m2φ2 +

δ

3
φ3 − λ

4
φ4

)
, (1)

with m the mass parameter, and δ and λ the cubic and
quartic couplings. This is the simplest renormalisable
field theory with a first-order phase transition; the sim-
pler Z2-symmetric theory has only a second-order phase
transition. More complicated theories with additional
field content may lead to qualitatively different dynam-
ics [38, 43–48].

In principle φ may be a scalar field in a fundamen-
tal UV theory, or simply an effective operator describing
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the order parameter of the transition.2 We consider po-
tential parameters such that there is a first-order phase
transition from a metastable false vacuum at 〈φ〉 = 0 to
a stable true vacuum at 〈φ〉 6= 0. Note that any linear
(tadpole) term in the Lagrangian can be removed by a
shifting of the field origin. The parameters should be un-
derstood to be the effective parameters of the low-energy
theory which describes physics at the length-scales rele-
vant for bubble nucleation.

Bubble nucleation may proceed either via quantum
mechanical tunnelling or a thermal over-barrier transi-
tion. We assume the transition to take place via quantum
mechanical tunnelling, and hence that the temperature
is much smaller than the inverse of the bubble radius at
nucleation [49]. In this case the nucleation process ef-
fectively happens in vacuum, and the bubble has O(4)
symmetry. At higher temperatures, for which there is
a thermal over-barrier transition, the nucleated bubble
instead has O(3) symmetry.

In either case, after nucleation the bubble is highly oc-
cupied and hence semiclassical. In this paper, we will as-
sume that the smooth classical field equations resulting
from Eq. (1) provide a sufficiently accurate description
for the time evolution. Corrections to this description,
arising from the effect of thermal or quantum mechani-
cal fluctuations, can be incorporated by adding stochastic
fluctuation and dissipation terms to the equations of mo-
tion, or to the initial conditions. We further assume that
the field undergoing the transition does not interact suf-
ficiently strongly with other fields to affect its dynamics.

The time evolution of both O(3) and O(4) bubbles in
vacuum was considered in Ref. [39], where it was found
that at late times no significant difference between the
two was observed. Note however that for O(3) bubbles,
the presence of the thermal bath may significantly affect
the time evolution equations, except perhaps in the case
of thermal runaways [19].

We also assume a flat Minkowski background space-
time, so that for example the transition is not so slow
and strong that the nucleation of bubbles causes infla-
tion by virtue of the vacuum energy released [50].

The parametric dependence of the classical theory can
be simplified by the following transformation:

xµ →
√
λ

δ
xµ, φ→ δ

λ
φ (2)

Under this transformation the action transforms to

S[φ] =
1

λ

∫
d4x

(
∂µφ∂

µφ− λm2

2δ2
φ2 +

1

3
φ3 − 1

4
φ4

)
.

(3)

2 For example, the gauge-invariant condensate 〈H†H〉, which dis-
tinguishes between the two phases of a Higgs-like phase transi-
tion, is a real scalar.

Thus the classical dynamics after nucleation only de-
pends nontrivially on the combination,

λ̄ ≡ m2

m2
c

=
9λm2

2δ2
, (4)

where mc is the critical mass, at which point the two
phases are degenerate in energy. In this parameterisa-
tion, the potential energy density reads,

V (φ) =
λ̄

9
φ2 − 1

3
φ3 +

1

4
φ4. (5)

This parameterisation was introduced in Ref. [51], and
has been used since in, for example, Ref. [40]. For conve-
nience, the relation to some other conventions is given in
Appendix A. The minima for this potential are located
at

φf = 0, φt =
1

2

(
1 +

√
1− 8

9
λ̄

)
, (6)

and we will focus on the case where these are a metastable
false vacuum and a stable true vacuum respectively, i.e.
where V (φf) > V (φt) and both are minima. For λ̄ >
1 the extremum at φ = 0 is the global minimum, and
at λ̄ = 1 it is degenerate with the other minimum at
φ 6= 0. At and below λ̄ = 0 there is no longer a barrier
between the two vacua, and hence there can be no first-
order phase transition; starting from φ = 0, spinodal
decomposition will occur for such values of λ̄. A first-
order phase transition from φf to φt may take place for
λ̄ ∈ (0, 1). The thick- and thin-wall limits are given by

thick: λ̄→ 0+, thin: λ̄→ 1−. (7)

We plot the potential used in Figure 1.
The critical bubble solves the bounce equations [52,

53],

d2φ0

dρ2
+

3

ρ

dφ0

dρ
− dV

dφ0
= 0, (8)

with boundary conditions such that φ0 → φf as ρ → ∞
and dφ0/dρ = 0 at the origin. In this paper we solve the
bounce equation using the CosmoTransitions code [54].
In all cases tunnelling takes place from the false vacuum
through the potential barrier, ending somewhat short of
the true vacuum [53]. For thin-wall bubbles, tunnelling
takes place almost up to φt, whereas for thick-wall bub-
bles the tunnelling trajectory falls far short. As we will
later show, this difference has important consequences
for the dynamics of the phase transition.

Note that, for bubble nucleation to take place at a
given cosmological time, it must be that the bubble nu-
cleation rate is at least as fast as the Hubble expansion.
This implies the following relation between λ, λ̄ and the
Hubble rate H in units of the particle mass [51, 55]

1

λ
S̄(λ̄) ∼ 4 log

(m
H

)
, (9)
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FIG. 1: Sketch of the potential (5) used in this paper.
The values of λ at which we simulate are indicated by
horizontal white lines in the colour bar. The false and
true vacua, φf and φt respectively, are indicated with
small vertical lines in the potential curves. See also
Fig. 1 in Ref. [40], in which the curves are normalised
by the vacuum energy difference ∆V = V (φt)− V (φf).

where S̄(λ̄) ≡ λ S(m, δ, λ) is the scaled action of the
critical bubble, which ranges from 0 to infinity as λ̄ ranges
from 0 to 1 (see Eq. (3)). As a consequence of Eq. (9),
for a given m/H, more weakly coupled particles (smaller
λ) will nucleate with thicker wall bubbles (smaller λ̄).

As long as both m and the energy density of the uni-
verse are far sub-Planckian, it will be that m/H � 1.
Therefore bubble nucleation will take place when the (un-
scaled) action of the critical bubble is large. As long as
the rate of change of the bubble nucleation rate is not so
large as to counteract the m/H � 1 hierarchy, the aver-
age distance between nucleated bubbles R∗ will be large
compared with their initial radius R0; for details see for
example Refs. [29, 51, 55]. In this case the bubbles have
a long time to expand before collision, and hence, under
constant acceleration due to the vacuum energy differ-
ence between phases, they will reach highly relativistic
velocities.

A. Symmetries

The critical bubble is invariant under a Euclidean O(4)
symmetry about its centre. Its time evolution is deter-
mined by the Wick rotation of the bounce equation, and
hence, after nucleation, it has an O(3, 1) symmetry,

φ(x) = φ0(−t2 + x2 + y2 + z2). (10)

However, in performing the Wick rotation, a choice for
the initial time slice is made, which would appear to
break the O(3, 1) down to O(3). The question arises
though, as to what physically breaks this symmetry. The

answer, as made clear in Refs. [56, 57], is that an ob-
server is required to break this symmetry, as all inertial
observers will see bubbles preferentially nucleated at rest.
Therefore, in the absence of an observer the evolution of a
vacuum bubble has O(3, 1) and not just O(3) symmetry.

In the presence of a second critical bubble, nucleated
in a spacelike separated region, the line joining their cen-
tres defines a preferred direction. We may define this line
as being along the z axis and choose a Lorentz frame in
which the bubbles are nucleated simultaneously. As a re-
sult of this preferred direction half of the symmetries are
broken. The remaining unbroken symmetry generators
are the rotations about the z axis, Jz, and the boosts in
the x and y directions, Kx and Ky, which together form
the generators of O(2, 1),

[Jz,Kx] = Ky, [Jz,Ky] = −Kx, [Kx,Ky] = −Jz, (11)

with all other commutators zero. Just as in the case of a
single bubble, the initial conditions defined at some initial
time, t = 0, break the boost symmetries, reducing the
symmetry group down to the O(2) group generated by Jz.
However, due to the bubbles being spacelike separated,
the notion of simultaneous nucleation is contingent upon
an inertial observer. Thus, in the absence of an observer,
the evolution of two vacuum bubbles has O(2, 1) and not
just O(2) symmetry.

To make manifest the O(2, 1) symmetry, one can use
hyperbolic coordinates (s, ψ, θ, z), defined in two patches
in terms of the Cartesian coordinates (t, x, y, z). Follow-
ing Ref. [39], we label the patches by + and − for the
complementary regions t2 ≥ x2 + y2 and t2 ≤ x2 + y2 re-
spectively. In region + the coordinates and metric, dl2,
are given by:

t =s coshψ, x = s sinhψ cos θ, y = s sinhψ sin θ, (12)

dl2 = ds2 − s2dψ2 − s2 sinh2(ψ)dθ2 − dz2, (13)

and in the complementary region −, they are:

t =s sinhψ, x = s coshψ cos θ, y = s coshψ sin θ, (14)

dl2 = −ds2 + s2dψ2 − s2 cosh2(ψ)dθ2 − dz2, (15)

where we have adopted the mostly minus signature.
The coordinates ψ and θ are transformed nontrivially

under O(2, 1) transformations, whereas s and z are left
unchanged. As a consequence the field describing the
two-bubble system is independent of ψ and θ. The equa-
tions of motion are

±∂
2φ±
∂s2

± 2

s

∂φ±
∂s
− ∂2φ±

∂z2
+

dV

dφ±
= 0, (16)

where + and − in ± refer to the regions t2 > x2 + y2

and t2 < x2 + y2 respectively. This is a hyperbolic par-
tial differential equation (PDE) for t2 > x2 + y2 and an
elliptic PDE for t2 < x2 + y2.

There is an important caveat to this O(2, 1) symmetry.
The bounce, the most likely path between minima, has
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O(4) symmetry. However, the weight of any single, spe-
cific field configuration in the path integral is zero. When
considering the process of bubble nucleation, one must
sum over the phase space in the vicinity of the bounce,
giving the so-called fluctuation prefactor in the rate of
bubble nucleation [58]. The addition of statistical fluctu-
ations to the background field breaks the O(4) symmetry
of the bounce by a small amount, and in their evolution
some fluctuations may be exponentially amplified [59–
61]. Once the fluctuations have grown sufficiently large
and nonlinear, the symmetry of the original background
field configuration is completely broken.

In our analysis, we choose to utilise the O(2, 1) symme-
try of the two-bubble system without statistical fluctua-
tions. The consequent reduction in computational effort
allows us to study a much greater dynamical range than
would be possible if we were to study the full 3+1 di-
mensional problem. In particular, this allows us to study
significantly larger collision velocities than were possible
in the 3+1 dimensional studies of Refs. [37, 61]. How-
ever, in our setup we cannot study the growth of small
symmetry-breaking fluctuations and the eventual break-
down of the approximate O(2, 1) symmetry. Cause for
optimism can nevertheless be found in the 3+1 dimen-
sional simulations of Ref. [61], in which the effect of small
symmetry-breaking fluctuations was investigated. There
two-bubble collisions were studied, one with thin and
the other with thick walls, equivalent to λ̄ ≈ 0.941 and
λ̄ ≈ 0.0223 respectively. The thin-wall case showed expo-
nential growth of fluctuations partially resulting from the
trapping phenomenon, with significant deviation from
the O(2, 1) symmetry only after approximately twice the
time taken for the bubbles to accelerate and collide. We
will stop our simulations at or before this time. Further,
for their thick-wall bubble collision Ref. [61] found that
the symmetry-breaking fluctuations did not grow signif-
icantly even at late times.

B. Solving the equations of motion

Here we briefly describe how we set initial conditions
and solve the field equations of motion, Eq. (16). In gen-
eral, our approach utilises a rectangular lattice in (z, s),
with derivatives approximated by finite differences. Tests
of this approximation, and of our numerical implementa-
tion [62] are collected in Appendix C.

Two bubble configurations are initialised at s = 0, so-
lutions of the bounce equations. Their origins are located
a distance d apart, with d chosen such that the two bub-
bles will collide with a given Lorentz factor,

γ =
d

R0
. (17)

Here R0 is the bubble radius, defined to be the point at
which φ0(R0) = 1

2φ0(0). For highly relativistic bubble
collisions, the bubbles are initially far apart, though for
small enough γ, their exponential tails may overlap. This

overlap issue is handled as in Ref. [37]. The definition of
the Lorentz factor given in Eq. (17) is based on the speed
of movement of the field profile, or more specifically of
the point with field value φ = φ0(R0).

An alternative definition of γ, based upon the Lorentz
contraction of the bubble wall, was put forward in
Ref. [40],

γalt =
Rout −Rin√

R2
out + s2

col −
√
R2

in + s2
col

, (18)

s2
col =

(
d

2

)2

−R2
0, (19)

written in terms of the inner and outer bubble radii, de-
fined as φ0(Rin) = 0.731φ0(0) and φ0(Rout) = 0.269φ0(0)
respectively. The differences between these two defini-
tions of the Lorentz factor are largest for thick-wall bub-
bles, and vary from less than 0.1% for λ̄ = 0.9 to as much
as 5% for λ̄ = 0.01.

The equations of motion are solved separately in the
two regions referred to in Eq. (16). In the timelike +
region, t2 > x2 + y2, the bubbles collide and the (hyper-
bolic) equations of motion must be solved numerically.
To do so, we have adopted a leap-frog algorithm, which
converges quadratically as the discretisation scales, dz
and ds, are taken to zero. From the initial conditions
at s = 0, this algorithm calculates the field at posi-
tions ds, 2ds, 3ds, . . . and the field momentum at posi-
tions ds/2, 3ds/2, 5ds/2, . . . . To describe the initial half-
step of the momentum field with the same accuracy as
the following steps, we have used the trick of splitting it
up into many smaller steps with size � ds.

In the spacelike − region, t2 < x2 + y2, the bubbles
never meet and the (elliptic) equation of motion (16) is
equivalent to the tunnelling equation, Eq. (8). Thus, the
solution in this region can be written simply in terms of
the bounce solution [39]

φ−(s, z) = φ0

(√
s2 + (z − d/2)

2
)

+ φ0

(√
s2 + (z + d/2)

2
)
. (20)

C. Linear modes

In general, in both regions, the equation of motion
must be solved numerically. However, in the + re-
gion, for small oscillations around one of the minima,
φ0 ∈ {φf , φt}, we can expand Eq. (16) to linear order in
ϕ = φ− φ0,(

∂2

∂s2
+

2

s

∂

∂s
− ∂2

∂z2
+M2

)
(φ− φ0) = 0. (21)

For the scaled potential, Eq. (5), the scaled masses, M ,
around the false and true vacua are,

M2
f =

2λ̄

9
, M2

t =
1

2

(
1− 8

9
λ̄+

√
1− 8

9
λ̄

)
. (22)
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The original dimensionful masses are attained from
these scaled masses by multiplication by δ2/λ, so that
δ2M2

f /λ = m2. Note that in the thick-wall limit λ̄ → 0,
Mf → 0+ and Mt → 1−, while in the thin-wall case
λ̄→ 1, Mf and Mt both tend to

√
2/3.

The solution to the linearised equation of motion can
be found by Fourier transforming Eq. (21) with respect
to z and then noting that the resulting equation is a
Bessel equation. The general solution to Eq. (21) is

φ = φ0 +

∫
dk

2π
(α(k)fk(s, z) + α∗(k)f∗k (s, z)) , (23)

where the wave modes are,

fk(s, z) =
e−i
√
M2+k2s+ikz

s
. (24)

These modes describe the free-particle or linear-wave so-
lutions about the minima, with dispersion relation,

ω2 = M2 + k2. (25)

Relaxing the dispersion relation, the modes form a com-
plete basis with which to expand the field. If the field
is well described by a superposition of linear excitations
about one of the minima, the dominant modes in the
expansion will satisfy Eq. (25).

On the lattice, we adopt a discrete mode expansion
which is orthogonal and approaches Eq. (23) in the con-
tinuum limit. The details of our numerical implementa-
tion [62] are given in Appendix B.

III. GRAVITATIONAL WAVES

Gravitational waves are sourced by shear stresses, by
the transverse, traceless part of the energy-momentum
tensor. In highly symmetric systems, such as those with
spherical O(3) symmetry, the net gravitational wave pro-
duction is zero. In fact, it was shown in Ref. [30] that
this is also the case for the O(2, 1)-symmetric collision of
two vacuum bubbles. As gravitational waves are sourced
locally, but the symmetry is a global property, their ab-
sence can be understood as due to precise cancellations
between the gravitational waves produced by different
regions.

In a cosmological first-order phase transition, the
O(2, 1) symmetry of two-bubble collisions is broken by
their coming into contact with additional bubbles, which
eventually fill the universe with the new phase and end
the transition. For our two-bubble collisions, this pro-
cess can be modelled by cutting off the collision in an
O(2, 1)-breaking way. We follow Refs. [32, 39] in choos-
ing a constant time slice to end the collision, thereby
breaking the two boost symmetries. While alternative
choices will lead to different gravitational wave spectra,
we will be interested in the dependence of the spectrum
on the parameters λ̄ and γ, and such dependence may be
revealed using any reasonable, fixed cutoff model.

We will work in the linearised gravity approximation,
meaning that we consider only small metric fluctuations
about the background Minkowski space, and ignore grav-
itational backreaction. This means, in particular, that
we do not include the effect of the false vacuum inflat-
ing, which becomes relevant for very slow transitions, and
neither are we able to study black hole formation. Our
analysis is however fully (special) relativistic, which is
necessary as the bubble walls and subsequent scalar field
oscillations move with relativistic speeds.

We are interested in the gravitational wave power ra-
diated to infinity. This can be determined in terms of the
Fourier transform of the energy-momentum tensor,

T ij(ω,k) =
1

2π

∫
dt eiωt

∫
d3x e−ik·xT ij(x, t), (26)

where ω is the angular frequency and k is the momentum
vector. Only the components with null four-momentum,

k = ωk̂ where k̂ is a unit vector, contribute to the grav-
itational wave spectrum.

The power radiated as gravitational waves from a lo-

calised source in a direction k̂ is given by the Weinberg
formula [63],

dEGW

dΩd log(ω)
= 2Gω3Λij,lm(k̂)T ij∗(ω,k)T lm(ω,k), (27)

Λij,lm(k̂) = δilδjm − 2k̂jk̂mδil +
1

2
k̂ik̂jk̂lk̂m

− 1

2
δijδlm +

1

2
δijk̂lk̂m +

1

2
δlmk̂ik̂j .

(28)

Note that this formula has been derived in the far-field
approximation (or wave-zone), i.e. at distances from the
source, r, much larger than the wavelengths under con-
sideration, r � 1/ω, much larger than the size of the
source, r � Rsource, and r � ωR2

source. We will how-
ever follow previous literature [31, 32, 39, 47] in using
the formula down to its breaking point, ωr ∼ 1 and
r/Rsource ∼ 1. We justify this by noting that we are
chiefly interested in the differences between the gravi-
tational wave spectrum of collisions at different λ̄ and
γ, rather than their absolute gravitational wave spec-
trum. Further, by focusing on two-bubble collisions, we
are anyway unable to describe the low-frequency physics
of a system of many colliding bubbles. Thus we focus
on the high-frequency tail of the gravitational wave spec-
trum, between the peak and the microscopic mass scale.
These wavelengths are smaller than the distance between
bubbles and hence should be well captured by two-bubble
collisions, and for them the far-field approximation is bet-
ter justified. Going beyond the far-field approximation
can be achieved either at the expense of more difficult nu-
merical integrals, or by dynamically evolving the metric
fluctuations.

The translation of the Weinberg formula into hyper-
bolic coordinates has been given in Eqs. (32) and (A1)-
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(A8) of Ref. [32], which we have verified and utilised.3

The result is a set of four integrals over the coordinates
(s, ψ, θ, z), which we perform numerically. As discussed
in Ref. [32], the integrals over s, ψ and z take the form
of a pair of double integrals, rather than a full triple in-
tegral, which reduces significantly the numerical effort.

To implement the O(2, 1)-breaking end of the two-
bubble collision, the gravitational wave integrals are mul-
tiplied by a cutoff function C. The cutoff function used
has the same form as in Ref. [32], having an exponentially
decreasing factor after a certain cutoff time tc,

C(t = us) =

{
1 t ≤ tc
e−(t−tc)2/t20 t > tc

(29)

where the coordinates s, t and u are those given in
Eqs. (12) to (15). In our final simulations, we have chosen
tc = 0.9 smax, t0 = 0.25 (smax − tc) and smax = 1.2 d.

The numerical integrations were performed using the
trapezium rule, which converges quadratically to the con-
tinuum limit as the discretisation scales are decreased.
This therefore matches the accuracy of the leap-frog al-
gorithm used to solve the scalar equations of motion.
Further details and tests of the numerical implementa-
tion [62] are collected in Appendix C.

The gravitational wave spectrum produced by two-
bubble collisions has a global maximum peak at ωpeak ≈
π/d and power-law tails [32]. The same is true for the
gravitational waves produced by the many-bubble colli-
sions of a full phase transition, with the peak position at
ωpeak ≈ π/R∗, where R∗ is the mean separation of bub-
bles at nucleation [37]. In both cases, the spectrum shows
additional structure at frequencies of order the mass of
the scalar particle ω ∼M � ωpeak, though with a much
lower amplitude than the main peak. For gravitational
wave experiments with limited sensitivity, the vicinity of
the main peak of the spectrum is of primary interest.

The gravitational wave spectrum in the vicinity of the
peak can be fit with the function [40],

dΩfit

d log(ω)
= Ω̃GW

(a+ b) ωaω̃b

a ωa+b + b ω̃a+b
, (30)

where a, b, ω̃ and Ω̃GW are the fit parameters. The pa-
rameters a and b correspond to the low-frequency ωa and
high-frequency ω−b power laws respectively, while k̃ and
Ω̃GW approximately correspond to the peak position and
amplitude. Note that here high frequencies correspond
to those in the window ωpeak � ω �M .

Fits were performed by minimising the sum of
squared residuals, the default behaviour of the
scipy.optimize.curve fit function in SciPy 1.5.3.
The fit is performed on a restricted range of data, sat-
isfying ω < ωcut, where ωcut = min(Mf ,Mt, 10π/d), to

3 The same equations are also given in Eqs. (20)-(21) of Ref. [39],
though they differ there by an overall factor of 1/4.

avoid both mass-scale contributions and numerical arte-
facts. This choice was further motivated by the desire not
to cut off the peak for the smallest values of the Lorentz
factor. We have verified that varying ωcut by a factor
of 2 has no significant effect on the fit results at γ & 4,
because points in the vicinity of the peak dominate the
sum of squared residuals. Therefore, we do not antic-
ipate substantial bias from the low- or high-frequency
power laws.

The low-frequency power law for the gravitational wave
spectrum can be argued to be ω3 based on causality [64].
Within our current framework the same result can be ar-
rived at as follows. For a localised source of gravitational
waves, such as we consider, the small-frequency limit of
the Fourier-transformed energy-momentum tensor is a fi-
nite constant. Assuming this constant is nonzero, from
Eq. (27) we can see that the low-frequency power law for
the gravitational wave spectrum is ω3. We therefore set
a = 3 in Eq. (30).

We follow Refs. [32, 37] in normalising the spectrum

dΩGW

d log(ω)
→ 1

(H∗R∗Ωvac)2

dΩGW

d log(ω)
,

=
1(

8π
3 d

2
) (

4π
3 s

3
max

)
V (φb)2

dEGW

d log(ω)
, (31)

to factor out expected scalings. The quoted values for
the fit parameter Ω̃GW apply to the scaled spectrum.

IV. RESULTS

In this section, we present the results of our classical
simulations of the collisions of two vacuum bubbles, and
of their gravitational wave signals. The parameters for
the simulations performed are collected in Appendix E.
Building on and extending previous studies, we focus on
how the dynamics of these collisions depend on two key
parameters: λ̄, which determines the bubble wall thick-
ness (or degree of supercooling), and γ, the Lorentz factor
at collision. Both λ̄ and 1/γ lie in the range (0, 1). We
will be particularly interested in γ � 1, which is expected
to be relevant to those very strong transitions which yield
the largest gravitational wave amplitude.

A. Bubble dynamics

Early studies of bubble nucleation [65–67] were
premised upon the thin-wall approximation, which un-
derlies much of our intuition about bubble nucleation
and dynamics (see also Ref. [68], which uses the thin-wall
approximation within classical thermodynamics). A con-
stant outward pressure, due to the difference in potential
energy density between the two phases, causes supercrit-
ical bubbles to grow and accelerate, until eventually they
collide.
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(a) Thin-wall bubble collision, at (λ̄, γ) = (0.9, 4).
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(b) Thick-wall bubble collision, (λ̄, γ) = (0.01, 4).

FIG. 2: The field φ and energy density E as a function of coordinates s and z for moderate γ in the thin- and
thick-wall regimes. The field and energy density have been normalised by their values in the true vacuum.
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(a) (λ̄, γ) = (0.9, 4).
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(b) (λ̄, γ) = (0.01, 4).

FIG. 3: The bubble collision scenarios plotted in Fig. 2, shown at time t = 1.5 scol (see Eq. (19)) in cylindrical
coordinates; the choice of slicing plane x is arbitrary.

Within this picture, the dynamics of the full field re-
duces to that of a thin surface, separating regions with
different energy density.

Mathematically, the field equations in the thin-wall
limit reduce to equations describing the time evolution
of the position of the bubble wall, i.e. from partial to or-
dinary differential equations. These equations have been
formulated and studied in Refs. [29, 30], and are analyti-
cally tractable. For relativistic two-bubble collisions, the
following picture emerges: The pressure difference be-
tween the two phases accelerates the bubble walls until
they collide. At the point of collision, the only way to
conserve energy is for the bubble walls to pass through
each other, creating a trapped region of the false vacuum
between them. However, now the pressure is reversed
and acts to decelerate the bubble walls, causing them
eventually to stop, turn around and then recollide. This
process takes a time

strap

d
=
(

21/3 − 1
)√

1− 1

γ2
, (32)

and the trapped region is of a spatial extent

ztrap

d
= 21/3 − 1− 1

3γ
+O

(
log(γ)

γ2

)
. (33)

After recollision, the process repeats, with the size of
successive trapped regions decreasing. After many con-
secutive collisions, the bubble walls eventually become
nonrelativistic and cease to recollide.

As discussed in Sec. II, parametrically the thin-wall
limit corresponds to λ̄ → 1− in this real scalar the-
ory. Fig. 2a shows the collision of two bubbles with
(λ̄, γ) = (0.9, 4) and reproduces the known thin-wall be-
haviour, seen also in Fig. 3a. The trapping phenomenon
is shown clearly in the plot of the field: in the collision re-
gion, approximately diamond-shaped regions of the false
vacuum are produced, as the bubble walls pass through
each other before slowing and bouncing back. Each suc-
cessive trapped region is smaller than the last, and in
fact we have verified that Eq. (32) holds rather well. The
lower plot in Fig. 2a shows that the energy density is
heavily concentrated in the bubble walls. In addition,
one can see that the bubble walls lose energy by radiat-
ing wavelike fluctuations, a phenomenon not captured by
the thin wall limit.

Away from the thin-wall limit, trapping occurs less
and less. To quantify this, in our simulations we define
the trapping fraction as the fraction of time that φ(s, 0)
spends in the false vacuum after the collision and before
the end of the simulation, or mathematically

trapping fraction =

1

smax − s̃col

∫ smax

s̃col

θ (φmax − φ(s, 0)) ds, (34)

where θ is the step function, φmax is the position of the
maximum between phases, and s̃col ≈ scol is taken to be
the first local maximum in φ(s, 0) after scol (see Eq. (19)).
This is plotted in Fig. 4a. The largest trapping frac-
tions occur for ultrarelativistic thin-wall bubbles, how-
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FIG. 4: Plots of the trapping fraction (a) and rolling fraction (b), defined in Eqs. (34) and (35) respectively.
Trapping occurs most for ultrarelativistic thin-wall bubbles, however also very thick-wall bubbles have a small
nonzero trapping fraction. In Fig. 4a, data points are shown as black dots, which has been linearly interpolated onto
a 202 uniform grid before constructing the contours. The trapping fraction is zero in the central white region. The
dashed orange line shows λ̄ = 0.876088(1), to the right of which the one-dimensional trapping equation of Ref. [38]
predicts trapping to occur. Only thick-wall bubbles have a significant rolling fraction. In both plots, we also show
parameter points studied in the literature: blue squares from Refs. [37, 40], green triangles from Refs. [32, 41] and
red crosses from Ref. [39].

ever very thick-wall bubbles also briefly bounce back to
the false vacuum, with a trapping fraction . 0.1. Note
that the one-dimensional trapping equation of Ref. [38]
predicts trapping to occur for λ̄ ≥ 0.876088(1), shown as
the dashed orange line in Fig. 4a.4

In the opposite limit, that of thick bubble walls, the
dynamics of bubble collisions is qualitatively different.
As one considers thicker and thicker wall bubbles, i.e. as
λ̄ → 0+, the maximum of the potential separating the
two minima moves closer and closer to the false vacuum.
The maximum also becomes smaller and smaller rela-
tive to the depth of the true vacuum (as seen in Fig. 1).
The initial bounce configuration in this limit is a roughly
Gaussian blob with a very small amplitude (proportional
to λ̄), just sufficient to peak out beyond the maximum
separating the phases. At nucleation the field is therefore
near the top of a tall hill of potential energy, and upon
time evolution it rolls down towards the true vacuum. To
quantify this, we define the quantity rolling fraction as
the fraction of the height of the potential energy hill that
the field rolls down, or mathematically

rolling fraction =
V (φ0)− V (φt)

V (φmax)− V (φt)
, (35)

4 The definition of trapping from Ref. [38] corresponds to the limit
smax → ∞ of Eq. (34), i.e. to the infinite time limit. However,
while for planar domain walls, trapping may occur for infinite
times, for spherical bubbles this does not seem to be the case.

where φ0 is the central value of the bounce configura-
tion. The rolling fraction is plotted in Fig. 4b, with
points studied in the literature identified. This reveals
that thick-wall bubbles, with a sizeable rolling fraction,
have been relatively little studied.

Fig. 2b shows the collision of two thick-wall bubbles
with (λ̄, γ) = (0.01, 4). Differences from the thin-wall
case are immediately apparent in the overall shape of the
field and energy density. At s = 0, the central value of a
thick-wall bubble is far from the true vacuum, and there
is little energy density in the initial condition. The energy
density grows as the field value rolls down the potential
energy slope towards the true vacuum, and as it does so,
oscillations develop on top of the growing bubbles, form-
ing a wave train in the wake of the bubble wall. These
are visible as the ribbed pattern in the plot of the field
in Fig. 2b. As the bubble grows and accelerates, these
oscillations become more and more Lorentz contracted.

For thick-wall bubble collisions, first the bubble walls
collide; then the oscillations in their wakes collide one-
by-one. A significant amount of energy is stored in these
oscillations. This energy density largely passes through
the collision centre, approximately along the lightcone,
though it appears slowed by the collision. Upon closer
inspection, it can be seen that each oscillation continues
on at close to its collision speed, yet its amplitude damps,
thereby creating the illusion of slowing in Fig. 2b. The
first oscillations to collide are also the first to die out
after the collision. Altogether a complicated diffraction-
like wave pattern is created within the future lightcone
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FIG. 5: Two-dimensional linear mode expansions of the field φ̃kω for thick- and thin-wall bubbles. In each case only
times after the collision of the two bubbles, in the range s ∈ [d/2, d], are included in the mode expansion. Linear
excitations of the field about the minima necessarily lie along the dotted and dashed lines shown, while nonlinear
excitations need not. Note that the linear excitations are significantly more prominent in the thick-wall case. The
modes along ω = vk arise because the bubbles are highly relativistic at collision (v ≈ 0.97), and largely pass through
each other. The lower left corners contain the low-frequency modes which produce the peak of the gravitational
wave spectrum.

of the collision centre. This effect is also clearly seen in
Fig. 3b. Unlike for thin-wall bubbles, trapping is all but
absent, as the high-amplitude oscillations in the colliding
wave trains prevent the field from remaining near the
false vacuum for long. Very little energy density remains
near the z = 0 axis after the collision.

To gain additional insight into the difference between
the thin- and thick-wall bubble collisions, in Fig. 5 we
show the expansion of the field into linear wave modes in
each case; see Sec. II C. The thin-wall case, Fig. 5a, shows
the largest occupation of modes for small wavenumbers
k � Mt,Mf and small frequencies ω � Mt,Mf , in the
bottom left corner of the plot. These modes reflect the
structure of φ at long scales and times, and, as we will
see, contribute to the peak of the gravitational wave spec-
trum. In addition there is significant occupation of modes
along ω ≈ k. This reflects the relativistic bubble walls
which pass through each other, moving at an approx-
imately constant speed. The thick-wall case, Fig. 5b
also shows the largest occupation of modes for small
wavenumbers and frequencies. However, there appear
to be fewer structures present in this region than in the
thin-wall case. In addition to this, and in contrast to the
thin-wall case, there is a significant occupation of modes
along ω2 = M2

t +k2, reflecting the presence of packets of
linear excitations about the true vacuum.

A possible dynamical feature that we have not fully
explored is the presence or absence of oscillons [69, 70]:
long-lived, localised nonlinear structures in the scalar
field. Their existence, abundance and longevity depend

on the form of the microphysical potential, and they in
turn may contribute to the production of gravitational
waves [71, 72]. However, a static oscillon produced at
z = 0 would break the two boost symmetries of O(2, 1),
essentially because it is of an approximately fixed size,
and not growing continuously. This suggests that oscillon
production requires collisions of more than two bubbles.
Though we have not found any conclusive evidence of the
presence of oscillons, in principle they may be discernible
in the Fourier mode decomposition as states lying at just
under the M2 + k2 dispersion relation [73–75].

B. Gravitational waves

The dynamics of thin-wall and thick-wall bubble colli-
sions are rather different, as we have demonstrated above.
This difference is determined by the parameters of the
theory on microphysical scales, yet it may be observable
today on macroscopic scales if it has a significant effect
on the resulting GW signals. In this section, we present
our results for the GW spectra of two-bubble collisions,
using the formalism outlined in Sec. III. We focus our
attention on how the spectra depend on the parameters
λ̄ and γ.

For each studied parameter point in the (λ̄, γ) plane,
we have calculated the GW spectrum at a number of
angular frequencies, typically 61, evenly spaced in log-
space in the range [ωmin, ωmax]. We used ωmin = π/Lz,
where Lz is the size of the simulation lattice in the z-
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FIG. 6: Gravitational wave spectra of two-bubble collisions. Fits (dashed) using Eq. (30) are shown alongside the
numerical data (full), as well as the result of the envelope approximation (black). The plusses and crosses show the
location of the masses in the true and false vacua respectively. Note that the uptick visible in the (λ̄, γ) = (0.01, 16)
line for ωR∗ & 50 is a lattice artefact: decreasing the lattice spacing moves this feature to larger values of ωR∗.

direction, and ωmax = min(π/δz, 10Mt).

Fig. 6 shows the GW spectra calculated for two values
of λ̄, one thin-wall with λ̄ = 0.84 and one thick-wall with
λ̄ = 0.01. In common with the literature on GWs, we
normalise the frequency with R∗, which for two-bubble
collisions we may identify with the input parameter d.
Lorentz factors γ = 2, 4, 8, 16 are plotted together. For
comparison, the GW spectrum from the envelope approx-
imation is shown in black [76].

For a fixed value of λ̄, it can be seen that the spectra
appear to converge as the Lorentz factor grows. At large
enough Lorentz factors, the dependence on the Lorentz
factor is accounted for by the overall scalings of Ref. [32]:
the peak frequency scales as ωpeak ∝ γ−1 and the peak
amplitude as Ωpeak ∝ γ5. Further, the values of the peak
frequency and amplitude agree relatively well with the
prediction of the envelope approximation.

There are clear differences between the thin- and
thick-wall spectra in Figs. 6a and 6b. For the smaller
Lorentz factors studied, both the amplitude and the high-
frequency slope ω−b of the spectra differ significantly. At
large Lorentz factors, the spectra in Figs. 6a and 6b ap-
pear to converge towards a similar peak amplitude. How-
ever, the high-frequency slope of the thick-wall spectrum
is steeper even at large Lorentz factors.

Figs. 7 and 8 quantify how the exponent b of the high-
frequency slope varies with λ̄ and γ. Fig. 8b summarises
these results in a contour plot of b across the (λ̄, γ) plane.
This reveals a great deal of structure. The most shal-
low high-frequency slopes, with b ≈ 0.9, are produced
by relatively slow moving thin-wall bubbles, in the lower
right-hand corner of the contour plot. The steepest high-
frequency slopes, with b ≈ 1.9 are produced by relatively

slow moving thick-wall bubbles, in the lower left hand
corner of the contour plot. As the Lorentz factor grows,
the differences between thin and thick walls become less
pronounced. However, even at Lorentz factors as large as
γ = 16, a significant difference remains. This can be seen
in Figs. 7a and 8a, together with the estimated fit errors.
Fig. 7b shows how the exponent b for two-bubble colli-
sions compares to that for many-bubble collisions, taken
from Ref. [40]. While the λ̄-dependence agrees qualita-
tively between the two cases, the high-frequency slope is
somewhat larger for many-bubble collisions.

The other two fit parameters for the gravitational wave
spectrum are shown in Appendix D. In both cases there
is a significant amount of structure at small Lorentz fac-
tors, which washes out as the Lorentz factor increases.
Notwithstanding, at large Lorentz factors, the peak fre-
quency ω̃ is marginally higher for thin-wall bubbles, and
the peak amplitude Ω̃GW is marginally smaller for in-
termediate thickness bubble walls. The high-frequency
exponent b shows the strongest dependence on λ̄ at large
Lorentz factors.

The results of Sec. IV A on the scalar field dynamics
suggest some possible explanations for the differences in
the GW spectra of thin and thick-wall bubble collisions.
In Fig. 5 it was shown that only thick-wall bubbles show
a significant occupation of linear modes about the true
vacuum, perhaps due to the oscillations initiated through
rolling down the potential barrier. An arbitrary super-
position of linear scalar modes, satisfying ω2 = M2 + k2,
does not source GWs at O(GN ), simply due to kinemat-
ics, and hence their presence would naturally lead to a
reduced gravitational wave amplitude, at least at these
larger wavenumbers. In addition, the phenomenon of
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FIG. 8: The fit parameter b(λ̄, γ) of Eq. (30), the high-frequency power law of the GW spectrum. In Fig. 8a the
results are plotted against the inverse Lorentz factor, 1/γ, for four different values of the parameter λ̄. Fig. 8b
summarises our results for b(λ̄, γ). Black dots denote the locations of our numerical data, which have been linearly
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have been omitted as the peak frequency is too near the fit cut off ωcut. In Fig. 8b we also show the locations of
simulations carried out in the literature: blue squares from Refs. [37, 40], green triangles from Refs. [32, 41] and red
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trapping, which occurs predominantly for thin-wall bub-
bles, is a time-dependent nonlinear phenomenon with the
potential to source significant GWs at frequencies higher
than ωpeak. Each of these factors, or their combination,
may explain the steeper high-frequency power law pro-
duced by thick-wall bubble collisions.

V. CONCLUSIONS

In this article, we have studied vacuum two-bubble col-
lisions and their GW spectra, focusing on the dependence
on the Lorentz factor γ and the microphysical Lagrangian
parameter λ̄, which determines how thick or thin the bub-
ble walls are at nucleation. In agreement with previous
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studies, we have found that at fixed λ̄ and as γ → ∞
the GW spectrum appears to converge towards a fixed
spectrum, up to known scalings. However, the converse
is not true. At fixed Lorentz factors, even at γ � 1, we
have shown that the GW spectrum depends significantly
on λ̄, which determines how thick or thin the bubble
walls are at nucleation. This corroborates the conclu-
sions of Ref. [40] at higher Lorentz factors. In particular
we have shown that the high-frequency power law ω−b is
steeper than that of the envelope approximation, which
for two-bubble collisions is b = 0.88 ± 0.02, varying be-
tween b = 1.74±0.12 and b = 1.25±0.07 as λ̄ varies from
0.01 to 0.84 at γ = 16; see Fig. 7a.

This conclusion is perhaps quite surprising, as the
GW spectrum peaks at frequencies of order 1/R∗, much
smaller than the frequencies of particle oscillations M �
1/R∗ which characterise the underlying Lagrangian pa-
rameters. Thus, microphysics and macrophysics do not
decouple in vacuum bubble collisions; the value of λ̄ de-
termines large-scale qualitative features of the bubble col-
lision dynamics.

We have characterised these large-scale features in a
variety of ways. The phenomenon of trapping occurs for
thin-wall bubbles at λ̄ ≈ 1. On the other hand new
oscillatory phenomena appear for thick-wall bubbles at
λ̄� 1, as a result of the field rolling down the true vac-
uum potential well, after nucleation. These phenomena
have discernible effects on the overall shape of the field
evolution, on its energy density and on its Fourier mode
decomposition.

While our simulations were performed only for two-
bubble collisions, our qualitative conclusions should hold
also in many-bubble collisions, as a result of the presence
of the same underlying physical phenomena. However,
the power laws of the GW spectrum will differ for many-
bubble collisions. In fact Ref. [40] found that the high-
frequency power law b in many-bubble collisions has an
even stronger dependence on λ̄ than we have found in the
two-bubble case, as can be seen in Fig. 7b. Thus, more
work is needed in future to determine these power laws
for many-bubble collisions at larger Lorentz factors.

In the full many-bubble simulations of Ref. [40], long-
lived, localised fluctuation regions appear to be present
after the bubbles have coalesced; for a video of the sim-
ulation see [77]. We conjecture that field oscillations in
these regions are responsible for the formation of a grav-
itational wave peak at the mass scale in those simula-
tions. Furthermore, if these regions are nascent oscillons,
they are expected to rapidly become spherical [74, 78]
and would then cease to source gravitational waves. As
discussed at the end of Sec. IV A, these localised re-
gions do not expand with time, and hence do not obey
the O(2, 1) symmetry of two-bubble collisions. There-
fore, the timescale on which these processes occur, and
their broader importance, are deferred to future work on
many-bubble collisions.

In summary, in the stochastic gravitational wave back-
ground of a vacuum first-order phase transition, we have

shown that the high-frequency power law ω−b depends on
λ̄, a microphysical Lagrangian parameter. This extends
the scope of GW experiments to probe particle physics
in the early universe, by breaking otherwise limiting de-
generacies [79].
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Appendix A: Potential conventions

For ease of comparison with other works, we list here
the relations between the convention of Refs. [40, 51],
which we adopt, and some other conventions in the lit-
erature. The relation to the convention of Refs. [31–
33, 36, 41] is

λ̄ =
3

2
+

3

2

2 + cos
(

4 cos−1(ε)
3

)
+
√

3 sin
(

4 cos−1(ε)
3

)
2− cos

(
2 cos−1(ε)

3

)
+
√

3 sin
(

2 cos−1(ε)
3

) − 4

−1

,

(A1)

ε = 3
√

3ε, (A2)

where the phase transition occurs for ε ∈ (0, 1/(3
√

3)).
In these references, most simulations were carried out for
ε = 0.1⇒ λ̄ ≈ 0.853, and hence in the relatively thin-wall
regime. The relation to the convention of Refs. [38, 39]
is,

λ̄ =
a(a+ 3)

(a+ 2)2
, (A3)

where the phase transition occurs for a ∈ (0,∞). The
two simulations of Ref. [39] were carried out for a =
2, 10 ⇒ λ̄ ≈ 0.625, 0.903, in the intermediate and thin-
wall regimes respectively.
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Ref. [61] carried out two runs using two different poten-
tials, which can be related to λ̄ via the conventions given
above. Explicitly, for their linear potential δlinear = 2ε
and for their cubic potential δcubic = 3/(3 + a). Their
thin- and thick-wall runs were equivalent to λ̄ ≈ 0.941
and λ̄ ≈ 0.0223 respectively.

Appendix B: Discrete mode expansion

For the lattice-discretised field, we utilise a discrete
mode expansion which reduces to that of Sec. II C in the
continuum limit. Here we take z and s to be integers
labelling the lattice sites, and running over the ranges
[0, Nz) and [0, Ns) respectively. In the z-direction the
transform is a type-I discrete cosine transform, and in
the s-direction it is a sinc-type transform. The transform
is orthogonal with weight (s+1)2. Explicitly, it takes the
form:

φ̃kω =

Nz−1∑
z=0

Ns−1∑
s=0

σz(s+ 1)2fkω,zsφzs, (B1)

φzs =

Nz−1∑
k=0

Ns−1∑
ω=0

σzfzs,kωφ̃kω, (B2)

where the discrete Fourier modes are

fia,jb =
2√

Ns(Nz − 1)

1

b
cos

(
πij

Nz − 1

)
sin

(
πab

Ns

)
,

(B3)

and we have introduced

σz = 1− 1

2
δz,0 −

1

2
δz,Nz−1. (B4)

This mode expansion is utilised in Fig. 5.

Appendix C: Numerical tests

The numerical results of this article rely chiefly on
three numerical computer codes [62], written in Python,
which respectively evolve the scalar field, calculate the
discrete mode expansion of the scalar field, and perform
the integrals for calculating the gravitational wave spec-
trum. Here we report the results of consistency and con-
vergence tests performed on these three codes.

A common test for simulation codes performing time
evolution is to test the conservation of energy. However,
due to the damping term in Eq. (16), the evolution of
the scalar field does not conserve ‘energy’ on constant
s-slices.5 Instead, one can test the rate of decay of the

5 Here, by ‘energy’, we refer simply to the sum of scalar kinetic
and potential energy density terms integrated over a surface of
constant s. This is not conserved because translations in s are
not a symmetry. Of course, the true energy corresponding to
translations in t is conserved.
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FIG. 9: Approximately quadratic convergence for
Eq. (C1) at (λ̄, γ) = (0.5, 4). The number in brackets
shown gives the fit error in the slope. The production
run with default lattice spacing corresponds to
δs = 0.01. Here we have fixed δz = 0.094.

energy, which can be shown to be [32]

dE

ds
= −4π
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∫ ∞
−∞

dz

(
∂φ

∂s

)2

. (C1)

At the parameter point (λ̄, γ) = (0.5, 4), Fig. 9 demon-
strates that as the lattice spacing is decreased, δz, δs →
0+, the exact equality (C1) is approached quadratically,
as expected for the leap-frog algorithm. For the default
lattice spacing choice (see Eq. (C2)), the maximum rela-
tive error in Eq. (C1) occurs near the collision point and
is approximately 0.1%, while the mean relative error is
0.003%.

The implementation of the discrete mode expansion
in Appendix B was demonstrated to be orthogonal, at
the level of machine precision. In addition, it was shown
to agree to high accuracy with the analytic result for a
Gaussian blob.

The implementation of the numerical integrations de-
termining the gravitational wave spectrum was compared
with an independent implementation in Mathematica us-
ing the inbuilt function NIntegrate. For a set of spe-
cific analytic field configurations, the two implementa-
tions were shown to agree to high accuracy, with the
discrepancy approaching zero quadratically as the lattice
spacing decreased, as expected for the trapezium rule.

For one benchmark point, at (λ̄, γ) = (0.5, 4), Fig. 10
demonstrates the approximately quadratic convergence
for the gravitational wave spectrum as δz and δs are
decreased towards the continuum limit. Shown are the
maximum and the mean absolute discrepancies between
the gravitational wave spectrum in the run at a given δs
and that at δs = 0.005. Only the fitted range, ω < ωcut,
is included. For the production run at this parameter
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FIG. 10: Approximately quadratic convergence for the
GW spectrum, at (λ̄, γ) = (0.5, 4), over the frequency
range which is fitted. The number in brackets shown
gives the fit error in the slope. The production run
corresponds to δs = 0.05. Here we have fixed the ratio
δz/δs = 2.

point, which used δs = 0.05, the fractional error is less
than 1%.

In addition to the aforementioned tests, which demon-
strate the expected behaviour of the numerical codes as
the continuum limit is approached, it is important to
test the stability of our final results to changes in lattice
spacing. This is to test whether the values of δz and δs
used, and enumerated in Appendix E, are small enough
for our quantitative conclusions to be reliable. For the
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FIG. 11: Lattice discretisation effects in the gravitational wave spectrum for the two runs with the largest
hierarchies of scale, i.e. worst case scenarios. In each case the production runs correspond to those with smallest
lattice spacing. Note that while the discrepancies in the spectrum are large towards ωR∗ ∼ 100, the resulting effect
on the fits is minimal. The mass scales which are not shown are greater than 100/R∗.

scalar field simulation runs, the default lattice spacing δz
was chosen according to

δz = min

(
0.1,

1

10 γalt
(Rout −Rin)

)
, (C2)

where γalt ≈ γ is defined in Eq. (18). This ensures that
there are at least ten lattice points across the bubble
wall at the collision point. For some runs at λ̄ = 0.01,
a smaller value of δz was chosen. The lattice spacing δs
was chosen to be smaller than δz. The complete list of all
run parameters are enumerated in Appendix E. As the
computation of the gravitational wave signal is the most
computationally intensive step, for this step the field was
down-sampled in the s-direction, with only one in Nδs
points used.

In Fig. 11, we demonstrate the δz and δs dependence
of the gravitational wave spectrum for two-bubble
collisions with γ = 16, one thin-wall with λ̄ = 0.84 and
one thick-wall with λ̄ = 0.01. In each case the lattice
spacing used in the production run is compared to runs
with two and four times larger lattice spacings. The two
parameter points are those with the largest hierarchies
of scale, and hence where we expect the largest lattice
discretisation errors. A comparison of the discretisation
errors at different parameter points bears this expecta-
tion out; the differences shown in Fig. 11 are larger than
those at all other parameter points tested. Nevertheless,
significant disagreements between the spectra occur only
for ω & ωcut, i.e. frequencies that are not included in the
fit. Further, the fit is dominated by the region around
the peak, so disagreement in the vicinity of ω ≈ ωcut has
only a minor effect on the fit parameters. Discrepan-
cies between the fit parameters for the smaller two lattice
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FIG. 12: The other fit parameters in Eq. (30), ω̃ and Ω̃GW, approximately equal to the peak position and amplitude
respectively. Data points and contours are as Fig. 8b.

spacings are in the range 2–9%, for those results
shown in Fig. 11. This is comparable in magnitude with
the fit error. In addition, the largest discrepancies occur
for the largest lattice spacings, suggesting convergence.

Appendix D: Additional fit parameters

For completeness, in Fig. 12 we present the λ̄ and γ
dependence of the other two fit parameters in Eq. (30),

ω̃ and Ω̃GW. Note that we fix a = 3.
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Appendix E: Table of simulations

Note that this table only includes simulation runs used in the preparation of the final results for this paper. See
Appendix C for details of simulations carried out as numerical tests.

Parameters Bubble geometry Simulation Integration Fitting results

λ γ R0 Rin Rout d δz δs Nδs Ω̃GW × 103 ω̃R∗ b
0.01 2 19.98 12.88 29.31 79.92 0.10 0.01 5 0.518 ± 0.008 4.135 ± 0.161 0.612 ± 0.087
0.01 4 19.98 12.88 29.31 159.85 0.10 0.01 5 0.818 ± 0.018 3.142 ± 0.039 1.912 ± 0.125
0.01 5 19.98 12.88 29.31 199.81 0.10 0.01 5 0.922 ± 0.020 3.109 ± 0.039 1.863 ± 0.116
0.01 6 19.98 12.88 29.31 239.77 0.10 0.01 5 0.960 ± 0.023 3.088 ± 0.046 1.686 ± 0.103
0.01 8 19.98 12.88 29.31 319.70 0.05 0.01 5 0.991 ± 0.023 3.092 ± 0.045 1.650 ± 0.092
0.01 10 19.98 12.88 29.31 399.62 0.10 0.01 5 1.003 ± 0.025 3.038 ± 0.048 1.661 ± 0.096
0.01 12 19.98 12.88 29.31 479.55 0.05 0.01 5 1.020 ± 0.022 3.058 ± 0.043 1.679 ± 0.085
0.01 16 19.98 12.88 29.31 639.39 0.05 0.03 1 0.984 ± 0.028 3.068 ± 0.051 1.743 ± 0.118
0.07 2 7.99 5.20 11.67 31.95 0.10 0.01 5 1.087 ± 0.008 3.302 ± 0.054 1.124 ± 0.106
0.07 3 7.99 5.20 11.67 47.92 0.10 0.01 5 1.198 ± 0.017 3.097 ± 0.024 1.920 ± 0.100
0.07 4 7.99 5.20 11.67 63.89 0.10 0.01 5 1.227 ± 0.016 3.100 ± 0.025 1.595 ± 0.065
0.07 5 7.99 5.20 11.67 79.86 0.10 0.01 5 1.248 ± 0.027 3.087 ± 0.043 1.525 ± 0.092
0.07 6 7.99 5.20 11.67 95.84 0.10 0.01 5 1.251 ± 0.028 3.073 ± 0.045 1.481 ± 0.087
0.07 8 7.99 5.20 11.67 127.78 0.09 0.01 5 1.234 ± 0.028 3.063 ± 0.046 1.476 ± 0.081
0.07 10 7.99 5.20 11.67 159.73 0.07 0.01 5 1.204 ± 0.026 3.060 ± 0.045 1.485 ± 0.074
0.07 16 7.99 5.20 11.67 255.56 0.04 0.01 5 1.147 ± 0.024 3.063 ± 0.044 1.556 ± 0.074
0.10 2 6.94 4.55 10.09 27.77 0.10 0.02 5 1.353 ± 0.012 3.142 ± 0.037 1.344 ± 0.113
0.10 3 6.94 4.55 10.09 41.66 0.10 0.02 5 1.355 ± 0.020 3.075 ± 0.025 1.813 ± 0.092
0.10 4 6.94 4.55 10.09 55.55 0.10 0.02 5 1.327 ± 0.029 3.092 ± 0.042 1.525 ± 0.100
0.10 5 6.94 4.55 10.09 69.43 0.10 0.02 5 1.326 ± 0.031 3.080 ± 0.046 1.487 ± 0.093
0.10 6 6.94 4.55 10.09 83.32 0.10 0.02 5 1.313 ± 0.031 3.073 ± 0.048 1.474 ± 0.089
0.10 7 6.94 4.55 10.09 97.20 0.08 0.02 5 1.299 ± 0.031 3.069 ± 0.048 1.474 ± 0.085
0.10 8 6.94 4.55 10.09 111.09 0.07 0.01 5 1.277 ± 0.027 3.066 ± 0.044 1.457 ± 0.075
0.10 16 6.94 4.55 10.09 222.18 0.04 0.03 1 1.168 ± 0.022 3.070 ± 0.040 1.521 ± 0.066
0.18 2 5.79 3.81 8.26 23.18 0.10 0.01 5 2.003 ± 0.025 2.971 ± 0.023 1.652 ± 0.106
0.18 3 5.79 3.81 8.26 34.76 0.10 0.01 5 1.656 ± 0.032 3.057 ± 0.037 1.452 ± 0.097
0.18 4 5.79 3.81 8.26 46.35 0.10 0.01 5 1.532 ± 0.019 3.073 ± 0.025 1.394 ± 0.052
0.18 5 5.79 3.81 8.26 57.94 0.09 0.01 5 1.464 ± 0.031 3.074 ± 0.043 1.355 ± 0.075
0.18 6 5.79 3.81 8.26 69.53 0.08 0.01 5 1.421 ± 0.029 3.073 ± 0.043 1.366 ± 0.070
0.18 8 5.79 3.81 8.26 92.70 0.06 0.01 5 1.359 ± 0.027 3.071 ± 0.042 1.405 ± 0.066
0.18 10 5.79 3.81 8.26 115.88 0.05 0.01 5 1.316 ± 0.026 3.070 ± 0.041 1.440 ± 0.065
0.18 16 5.79 3.81 8.26 185.40 0.03 0.01 5 1.231 ± 0.025 3.072 ± 0.043 1.508 ± 0.069
0.20 2 5.65 3.75 8.03 22.61 0.10 0.02 5 2.124 ± 0.026 2.963 ± 0.023 1.637 ± 0.106
0.20 3 5.65 3.75 8.03 33.92 0.10 0.02 5 1.723 ± 0.034 3.049 ± 0.037 1.449 ± 0.098
0.20 4 5.65 3.75 8.03 45.22 0.10 0.02 5 1.566 ± 0.033 3.075 ± 0.043 1.365 ± 0.084
0.20 5 5.65 3.75 8.03 56.53 0.09 0.02 5 1.495 ± 0.033 3.074 ± 0.045 1.357 ± 0.079
0.20 6 5.65 3.75 8.03 67.83 0.07 0.02 5 1.449 ± 0.032 3.071 ± 0.046 1.373 ± 0.075
0.20 7 5.65 3.75 8.03 79.14 0.06 0.02 5 1.411 ± 0.031 3.073 ± 0.046 1.397 ± 0.073
0.30 2 5.40 3.65 7.53 21.59 0.10 0.02 5 2.695 ± 0.030 2.912 ± 0.019 1.602 ± 0.073
0.30 3 5.40 3.65 7.53 32.39 0.10 0.02 5 1.953 ± 0.041 3.054 ± 0.042 1.246 ± 0.085
0.30 4 5.40 3.65 7.53 43.19 0.10 0.02 5 1.715 ± 0.036 3.070 ± 0.045 1.236 ± 0.073
0.30 5 5.40 3.65 7.53 53.98 0.08 0.02 5 1.602 ± 0.033 3.076 ± 0.045 1.275 ± 0.068
0.30 6 5.40 3.65 7.53 64.78 0.07 0.02 5 1.537 ± 0.031 3.074 ± 0.044 1.312 ± 0.065
0.30 7 5.40 3.65 7.53 75.58 0.06 0.02 5 1.492 ± 0.030 3.073 ± 0.044 1.346 ± 0.064
0.30 8 5.40 3.65 7.53 86.37 0.05 0.01 5 1.451 ± 0.027 3.074 ± 0.040 1.356 ± 0.059
0.30 10 5.40 3.65 7.53 107.97 0.04 0.01 5 1.395 ± 0.026 3.076 ± 0.040 1.397 ± 0.058
0.30 16 5.40 3.65 7.53 172.75 0.03 0.01 5 1.286 ± 0.026 3.077 ± 0.043 1.456 ± 0.066
0.40 2 5.60 3.89 7.61 22.40 0.10 0.02 5 3.001 ± 0.055 2.947 ± 0.036 1.241 ± 0.090
0.40 3 5.60 3.89 7.61 33.61 0.10 0.02 5 2.093 ± 0.044 3.058 ± 0.045 1.121 ± 0.072
0.40 4 5.60 3.89 7.61 44.81 0.10 0.02 5 1.809 ± 0.037 3.074 ± 0.045 1.185 ± 0.066
0.40 5 5.60 3.89 7.61 56.01 0.08 0.02 5 1.678 ± 0.033 3.074 ± 0.043 1.230 ± 0.059
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0.40 6 5.60 3.89 7.61 67.21 0.06 0.02 5 1.599 ± 0.031 3.077 ± 0.042 1.280 ± 0.058
0.40 7 5.60 3.89 7.61 78.41 0.05 0.02 5 1.549 ± 0.030 3.076 ± 0.043 1.318 ± 0.059
0.40 8 5.60 3.89 7.61 89.61 0.05 0.01 5 1.504 ± 0.027 3.080 ± 0.039 1.335 ± 0.054
0.40 10 5.60 3.89 7.61 112.02 0.04 0.01 5 1.445 ± 0.026 3.083 ± 0.039 1.371 ± 0.055
0.50 2 6.21 4.45 8.16 24.83 0.10 0.01 5 3.166 ± 0.065 2.983 ± 0.044 1.024 ± 0.078
0.50 3 6.21 4.45 8.16 37.25 0.10 0.01 5 2.158 ± 0.044 3.066 ± 0.046 1.051 ± 0.060
0.50 4 6.21 4.45 8.16 49.66 0.09 0.01 5 1.866 ± 0.023 3.073 ± 0.027 1.156 ± 0.037
0.50 5 6.21 4.45 8.16 62.08 0.08 0.01 5 1.725 ± 0.032 3.077 ± 0.041 1.208 ± 0.053
0.50 6 6.21 4.45 8.16 74.50 0.06 0.01 5 1.642 ± 0.029 3.082 ± 0.040 1.259 ± 0.051
0.50 7 6.21 4.45 8.16 86.91 0.05 0.02 5 1.592 ± 0.030 3.082 ± 0.041 1.305 ± 0.055
0.50 8 6.21 4.45 8.16 99.33 0.05 0.01 5 1.547 ± 0.027 3.088 ± 0.039 1.319 ± 0.052
0.50 10 6.21 4.45 8.16 124.16 0.04 0.01 5 1.470 ± 0.027 3.092 ± 0.040 1.332 ± 0.054
0.50 16 6.21 4.45 8.16 198.65 0.02 0.01 5 1.296 ± 0.026 3.089 ± 0.042 1.442 ± 0.063
0.60 2 7.29 5.47 9.24 29.16 0.10 0.02 5 3.129 ± 0.064 3.029 ± 0.048 0.892 ± 0.060
0.60 3 7.29 5.47 9.24 43.74 0.10 0.02 5 2.155 ± 0.042 3.077 ± 0.045 1.029 ± 0.053
0.60 4 7.29 5.47 9.24 58.32 0.09 0.02 5 1.880 ± 0.035 3.081 ± 0.043 1.140 ± 0.051
0.60 5 7.29 5.47 9.24 72.90 0.08 0.02 5 1.754 ± 0.032 3.086 ± 0.041 1.215 ± 0.050
0.60 6 7.29 5.47 9.24 87.48 0.06 0.02 5 1.681 ± 0.030 3.091 ± 0.040 1.264 ± 0.051
0.60 7 7.29 5.47 9.24 102.06 0.05 0.02 5 1.626 ± 0.030 3.095 ± 0.042 1.284 ± 0.054
0.60 8 7.29 5.47 9.24 116.64 0.05 0.01 5 1.557 ± 0.028 3.100 ± 0.041 1.279 ± 0.051
0.60 10 7.29 5.47 9.24 145.79 0.04 0.01 5 1.450 ± 0.026 3.098 ± 0.039 1.346 ± 0.053
0.60 16 7.29 5.47 9.24 233.27 0.02 0.01 5 1.237 ± 0.024 3.117 ± 0.042 1.447 ± 0.061
0.70 2 9.25 7.35 11.21 37.01 0.10 0.02 5 2.970 ± 0.059 3.062 ± 0.049 0.855 ± 0.050
0.70 3 9.25 7.35 11.21 55.51 0.10 0.02 5 2.139 ± 0.039 3.080 ± 0.043 1.042 ± 0.046
0.70 4 9.25 7.35 11.21 74.02 0.10 0.02 5 1.901 ± 0.034 3.088 ± 0.041 1.157 ± 0.047
0.70 5 9.25 7.35 11.21 92.52 0.08 0.02 5 1.787 ± 0.032 3.099 ± 0.041 1.213 ± 0.049
0.70 6 9.25 7.35 11.21 111.03 0.06 0.02 5 1.665 ± 0.031 3.108 ± 0.043 1.218 ± 0.052
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[1] Chiara Caprini et al., “Science with the space-based in-
terferometer eLISA. II: Gravitational waves from cos-
mological phase transitions,” JCAP 04, 001 (2016),
arXiv:1512.06239 [astro-ph.CO].

[2] David J. Weir, “Gravitational waves from a first or-
der electroweak phase transition: a brief review,”
Phil. Trans. Roy. Soc. Lond. A 376, 20170126 (2018),
arXiv:1705.01783 [hep-ph].

http://dx.doi.org/ 10.1088/1475-7516/2016/04/001
http://arxiv.org/abs/1512.06239
http://dx.doi.org/10.1098/rsta.2017.0126
http://arxiv.org/abs/1705.01783


20

[3] Chiara Caprini et al., “Detecting gravitational waves
from cosmological phase transitions with LISA: an up-
date,” JCAP 03, 024 (2020), arXiv:1910.13125 [astro-
ph.CO].

[4] Mark B. Hindmarsh, Marvin Lüben, Johannes Lumma,
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